Un nuevo método de impresión 3D busca replicar órganos humanos

Un revolucionario descubrimiento en la Universidad de Melbourne promete cambiar el panorama científico. Se trata de una técnica pionera en la recreación celular con precisión sin precedentes

Guardar
Innovadora técnica forma estructuras con precisión celular milimétrica. New Scientist

La posibilidad de crear copias funcionales de órganos humanos mediante impresión 3D dio un paso histórico de vital importancia gracias a una técnica novedosa que utiliza luz y sonido, resultando un avance que puede revolucionar la medicina moderna. Según revela New Scientist, un grupo de investigadores de la Universidad de Melbourne y liderados por David Collins, desarrollaron un método que permite generar réplicas orgánicas con gran rapidez y precisión, lo que abre la puerta a nuevas opciones de estudios y tratamientos de enfermedades, así como a la creación de modelos específicos de órganos para evaluar medicamentos de forma personalizada.

A diferencia de los sistemas convencionales de impresión en tipo 3D que construyen estructuras capa por capa sobre una base sólida, la técnica propuesta por Collins es conocida como impresión en interfaz dinámica y elimina la necesidad de una superficie rígida. En su lugar, emplearon un tubo hueco con sistema de aislamiento que se introduce en una solución de resina líquida. El procedimiento mantiene una interconexión de aire presurizado que evita el contacto directo con la resina y permite la solidificación al exponerse a la luz.

El innovador método proyecta imágenes de un objeto por capas mediante la interfaz de la resina, conformando estructuras tridimensionales con precisión a nivel celular. “Esto nos permite crear estructuras a escalas de células individuales”, subrayó el ingeniero biomédico Collins. Además, explicó que “este avance que podría revolucionar el campo de la bioimpresión al permitir la construcción de tejidos con resoluciones de hasta 15 micrómetros”.

Sumado a la intervención de luz durante proceso de curado, para acelerar las etapas también se aplican vibraciones mediante parlantes que generan ondas que fortalecen rápidamente la resina. Collins destacó: “La efectividad del sistema es elevada, la nueva técnica permite depositar 0.7 milímetros de estructura por segundo, una velocidad significativamente mayor que el récord anterior de 0.14 milímetros por segundo”.

Las soluciones volumétricas intentan superar
Las soluciones volumétricas intentan superar las técnicas 3D tradicionales. (Freepik)

Limitaciones en técnicas de impresión 3D tradicionales

Las metodologías de impresión en interfaz dinámica representan una solución vanguardista a los desafíos inherentes a técnicas convencionales de manufactura por adición, como la estereolitografía y otras tecnologías ópticas. Aquellos procedimientos tradicionales, se distinguen por brindar excelentes resoluciones en el producto final pero tienen limitaciones en términos de velocidad y flexibilidad material. El informe de New Scientist detalla que las estructuras clásicas deben ser reajustadas continuamente, lo cual ralentiza el proceso y restringe la posibilidad de imprimir estructuras de materiales blandos o biológicamente complejos. Los sistemas tradicionales requieren composiciones químicas específicas y sistemas ópticos avanzados, que limitan su aplicabilidad en determinados contextos médicos y biológicos.

Las fórmulas desarrolladas recientemente como la litografía axial computada y la xolografía, buscaron acelerar los ciclos de impresión por medio de técnicas volumétricas, creando objetos isotrópicos flotantes en una fracción del tiempo. Aunque estas tecnologías todavía enfrentan limitaciones puesto a que la xolografía requiere sistemas ópticos especializados y se ve afectada por la transparencia del material, dificultando la incorporación de células u otros componentes biológicos.

La impresión con interfaz dinámica impulsada por los científicos de la Universidad de Melbourne, eliminó la necesidad de bases sólidas y permite que los objetos impresos floten libremente en la resina, evitando problemas al extraer compuestos flexibles o delicados. Esta libertad estructural es clave para futuros avances en ingeniería de tejidos y la medicina regenerativa. “La capacidad de imprimir materiales que imitan la rigidez de los tejidos nativos hace de esta técnica un enfoque ideal para el cultivo de células y la generación de tejidos funcionales”, afirmó Collins.

La impresión biológica 3D con
La impresión biológica 3D con "interfaz dinámica", no requiere de bases sólidas. (Freepik)

Aplicaciones y proyecciones médicas

El avance en materia de bioimpresión 3D encabezado por Collins y su equipo podría transformar el futuro de la medicina personalizada. Al permitir la creación rápida y precisa de tejidos útiles a partir de células extraídas del propio paciente, con aplicaciones que parten desde la creación de modelos de órganos específicos para pruebas farmacológicas hasta la posibilidad de fabricar estructuras orgánicas completas.

Esto surtiría significativos efectos para la creciente escasez de donantes, consecuentemente reduciría los tiempos de espera para trasplantes y además reduciría riesgos de rechazo. Con la proyección de un crecimiento sostenido en el campo de la bioimpresión, esta tecnología promete inaugurar una nueva era en la medicina regenerativa y mejorar exponencialmente las opciones de tratamiento para enfermedades complejas.

Guardar

Últimas Noticias

Científicos de Hong Kong desarrollaron un modelo de IA que diagnostica enfermedades oculares

El estudio reveló que esta tecnología exhibe un rendimiento comparable o superior al de oftalmólogos de nivel intermedio en la detección de doce afecciones oculares
Científicos de Hong Kong desarrollaron

¿Cuánto es el tiempo máximo que dura un repelente contra mosquitos?

La importancia de los componentes activos y los porcentajes de concentración en esta herramienta contra el insecto que transmite el dengue y otras enfermedades. Con qué frecuencia hay que volver a aplicarse, según la ANMAT
¿Cuánto es el tiempo máximo

Descubren cómo los terremotos también pueden estar vinculados con el cambio climático

Un estudio reciente reveló que la reducción de masas de hielo genera movimientos en estructuras profundas del suelo y altera los patrones de eventos sísmicos. Este fenómeno afecta regiones donde grandes acumulaciones de agua desaparecen rápidamente
Descubren cómo los terremotos también

Científicos argentinos descifraron el genoma de la yerba mate

El trabajo llevó una década de investigación y contó con colaboración de equipos de la UBA y el CONICET junto a científicos de Brasil, Europa y Estados Unidos. El líder del estudio anticipó a Infobae los hallazgos que abren la puerta a nuevas variaciones genéticas de la infusión
Científicos argentinos descifraron el genoma

Manubot, el robot que recrea el salto maorí más espectacular

Un salto tradicional de Nueva Zelanda, conocido por su gran impacto visual, se convirtió en un fenómeno científico gracias a experimentos que revelaron sus principios fundamentales, destaca la revista New Scientist
Manubot, el robot que recrea
MÁS NOTICIAS