Científicos descubrieron que pueden utilizar ondas acústicas para crear tejido humano cultivado en laboratorio

Investigadores de la Universidad de Melbourne, en Australia, crearon una nueva tecnología de bioimpresión 3D

Guardar
La revista Nature detalla el método de "impresión de interfaz dinámica", que evita las limitaciones del enfoque tradicional capa por capa (Imagen Ilustrativa Infobae)
La revista Nature detalla el método de "impresión de interfaz dinámica", que evita las limitaciones del enfoque tradicional capa por capa (Imagen Ilustrativa Infobae)

En un laboratorio de la Universidad de Melbourne, en Australia, un equipo de ingenieros biomédicos revolucionó la creación de tejidos humanos con una nueva tecnología de bioimpresión 3D.

Este avance, detallado en la revista Nature, introduce un método innovador llamado “impresión de interfaz dinámica” que utiliza ondas sonoras para organizar células de forma precisa y veloz, evitando los inconvenientes del enfoque tradicional capa por capa.

En lugar de construir lentamente estructuras a lo largo de horas, esta bioimpresora logra ensamblar tejidos en segundos, abriendo nuevas posibilidades en el ámbito de la investigación médica y farmacéutica. La investigación fue levantada por los medios científicos Popular Science, Phys Org y Engineering.com.

Las ondas sonoras organizan células con precisión, permitiendo el crecimiento directo de tejido sobre placas de laboratorio (Nature)
Las ondas sonoras organizan células con precisión, permitiendo el crecimiento directo de tejido sobre placas de laboratorio (Nature)

La clave de esta tecnología radica en el uso de ondas acústicas que vibran burbujas microscópicas en direcciones específicas, situando las células en las posiciones necesarias para formar tejidos de diferentes tipos, desde estructuras blandas, como el cerebro, hasta otras más densas, como los huesos y cartílagos.

Al manipular la disposición de las células, los científicos pueden guiar el crecimiento celular con mayor control, permitiendo que las estructuras crezcan directamente sobre placas de laboratorio.

Esto no solo asegura que las muestras permanezcan intactas y estériles, sino que elimina la transferencia manual que, en sistemas anteriores, solía dañar las frágiles estructuras celulares y poner en riesgo su viabilidad.

El proceso aprovecha vibraciones acústicas que controlan el flujo del precursor, permitiendo que las estructuras crezcan rápido y sin interrupciones (Nature)
El proceso aprovecha vibraciones acústicas que controlan el flujo del precursor, permitiendo que las estructuras crezcan rápido y sin interrupciones (Nature)

Principio de la impresión de interfaz dinámica

La innovadora tecnología de impresión de interfaz dinámica de la universidad cambió por completo la manera de producir tejidos en el laboratorio.

Este método permite que el proceso de bioimpresión ocurra en la superficie curva del menisco, que es la capa superior de un líquido en reposo, mediante un sistema que proyecta patrones de luz hacia el fondo de un tanque que contiene fluido precursor.

Además, el sistema se beneficia de un cabezal de impresión presurizado y vibraciones acústicas que regulan el flujo y controlan la forma del menisco. La combinación de estos factores mantiene un flujo uniforme del precursor y permite que las estructuras crezcan desde el fondo hacia la superficie.

Este enfoque dinámico asegura que los objetos se impriman rápidamente y de forma continua, sin interrupciones en el suministro de material ni problemas de sobrecalentamiento, aspectos comunes en las bioimpresoras tradicionales.

La innovación permite replicar tejidos humanos con precisión, reduciendo la dependencia de modelos animales en estudios científicos (Nature)
La innovación permite replicar tejidos humanos con precisión, reduciendo la dependencia de modelos animales en estudios científicos (Nature)

En cambio, las bioimpresoras 3D convencionales presentan limitaciones significativas para la fabricación de tejidos complejos. Su funcionamiento lento depende de la superposición de capas, lo que requiere construir lentamente estructuras a lo largo de varias horas.

Este proceso no solo es largo, sino que expone a las células a condiciones de laboratorio por períodos extendidos, afectando su viabilidad y reduciendo la calidad de los tejidos resultantes.

Además, estas técnicas suelen causar daños durante la transferencia de las estructuras a placas de laboratorio para su análisis. Esto arriesga la integridad de los tejidos y limitando la utilidad de los resultados obtenidos.

Impacto en la investigación y ética médica

La bioimpresora 3D de la universidad ofrece mejoras tecnológicas y es un avance significativo en el ámbito de la ética y la metodología de la investigación médica.

La tecnología ofrece la posibilidad de crear modelos personalizados de enfermedades para estudiar afecciones individuales y desarrollar tratamientos a medida (Nature)
La tecnología ofrece la posibilidad de crear modelos personalizados de enfermedades para estudiar afecciones individuales y desarrollar tratamientos a medida (Nature)

Gracias a su capacidad de producir modelos de tejidos humanos con alta precisión y en poco tiempo, esta tecnología tiene el potencial de reducir la dependencia de los estudios preclínicos en modelos animales, un método tradicional que enfrenta críticas éticas y limitaciones en su capacidad de replicar con exactitud las respuestas biológicas humanas.

Con la nueva bioimpresora, los científicos pueden crear réplicas exactas de tejidos y órganos específicos, lo que permite realizar pruebas y experimentos con mayor precisión y, al mismo tiempo, minimiza el uso de animales en investigaciones científicas.

Además, esta tecnología abre la posibilidad de desarrollar modelos personalizados de enfermedades al replicar tejidos específicos de un paciente, facilitando el estudio de afecciones individuales y el desarrollo de tratamientos a medida. Este enfoque podría acelerar el descubrimiento de terapias innovadoras y personalizadas.

Guardar

Últimas Noticias

Por qué el cerebro de los gatos puede ayudar a la ciencia a estudiar el deterioro cognitivo de los humanos

Una iniciativa científica en los Estados Unidos realiza comparaciones entre las especies para entender mejor el envejecimiento de las personas. Los perros también podrían dar pistas al respecto. Cómo se los estudia
Por qué el cerebro de los gatos puede ayudar a la ciencia a estudiar el deterioro cognitivo de los humanos

Desarrollan un fármaco experimental que reproduce los efectos de correr 10km

Investigadores de la Universidad de Aarhus, en Dinamarca, generaron una molécula que promete replicar los beneficios metabólicos de la actividad física intensa y el ayuno, sin necesidad de moverse. Cómo funciona y por qué podría ser de utilidad en algunos casos
Desarrollan un fármaco experimental que reproduce los efectos de correr 10km

Las razones detrás del aumento en los casos de cáncer colorrectal en los adultos jóvenes, según los expertos

El reciente diagnóstico en el actor James Van Der Beek, conocido por su papel en la serie “Dawson’s Creek” en los 90, dejó en evidencia un alarmante crecimiento de esta enfermedad en menores de 50 años
Las razones detrás del aumento en los casos de cáncer colorrectal en los adultos jóvenes, según los expertos

Desde hepatitis C hasta estreptococo, los 17 patógenos prioritarios para el desarrollo de vacunas

Expertos de la OMS elaboraron la lista en relación con el impacto que tienen los microorganismos en la salud pública. Qué dijo el primer autor del trabajo a Infobae y las opiniones de otros dos expertos
Desde hepatitis C hasta estreptococo, los 17 patógenos prioritarios para el desarrollo de vacunas

Descubren una molécula clave en la regulación del metabolismo y la prevención de la obesidad

Investigadores de Trinity College Dublin descubrieron que la denominada IL-17A, que forma parte del sistema inmune y está presente en el tejido adiposo, sigue patrones circadianos para el correcto funcionamiento del organismo y el control del peso. Los detalles del estudio publicado en Nature
Descubren una molécula clave en la regulación del metabolismo y la prevención de la obesidad