¿Cómo olemos?: científicos habrían descubierto cómo descifrar el sentido del olfato

Investigadores de la Universidad de California, en San Francisco (UCSF), desarrollaron la primera imagen en 3D de la estructura de los receptores de olores. Aseguran que este hallazgo ayudaría a entender la creación de nuevos aromas

Guardar
Científicos crearon una estructura 3D precisa a nivel molecular de cómo una molécula de olor activa un receptor de olor en humanos (Getty Images)
Científicos crearon una estructura 3D precisa a nivel molecular de cómo una molécula de olor activa un receptor de olor en humanos (Getty Images)

El sentido del olfato permite navegar por un vasto espacio de moléculas de aromas químicamente diversas. Los receptores de olor en nuestra nariz nos ayudan a distinguir entre los diferentes tipos de olores: agradable, picante, etc. Esta tarea se logra mediante la activación combinatoria de aproximadamente 400 receptores acoplados a proteína G odorante codificados en el genoma humano.

Sin embargo, cómo dicha proteína es reconocida por los receptores de odorantes sigue sin estar claro. Ahora científicos de la Universidad de California en San Francisco (UCSF) han creado, por primera vez, una estructura 3D precisa a nivel molecular de cómo una molécula de olor activa un receptor de olor en humanos.

La investigación, que acaba de publicarse en Nature, se centra en un receptor olfativo, llamado OR51E2, y muestra cómo reconoce el olor del queso a través de ciertas interacciones moleculares que activan el receptor.

Los humanos logramos distinguir entre diversos aromas gracias a 400 receptores que junto a una proteína lo hacen posible (Freepik)
Los humanos logramos distinguir entre diversos aromas gracias a 400 receptores que junto a una proteína lo hacen posible (Freepik)

“Es básicamente nuestra primera imagen de cualquier molécula de olor que interactúa con uno de nuestros receptores de aromas”, afirmó Aashish Manglik, coautor del estudio y especialista del Departamento de Química Farmacéutica de la Universidad de California.

Los receptores de olores, proteínas presentes en la superficie de las células olfativas que se unen a las moléculas de olor, constituyen la mitad de los tipos de receptores más grandes y diversos en los seres humanos. En la década de 1920, los investigadores predijeron que la nariz humana podía diferenciar alrededor de 10.000 aromas, pero un estudio de 2014 sugiere que podemos distinguir más de un billón.

Cada receptor olfativo solo puede interactuar con un conjunto específico de odorantes, mientras que uno solo de éstos puede activar múltiples de aquéllos. “Esto se puede comparar con tocar una tecla en un piano. En lugar de tocar una sola nota, es una combinación de teclas que se tocan, lo que da lugar a la percepción de un olor distintivo”, indicó Manglik.

La investigación se centró en un receptor olfativo, llamado OR51E2 (Gettyimages)
La investigación se centró en un receptor olfativo, llamado OR51E2 (Gettyimages)

El cambio de escenario

Hasta ahora no se comprendía exactamente cómo los receptores olfativos captan olores específicos y los traducen a diferentes variedades en el cerebro. Además, la producción de proteínas de receptores olfativos de mamíferos en el laboratorio sigue siendo un desafío para los investigadores.

Teniendo en cuenta todas estas variables, el equipo de especialistas recurrió al receptor OR51E2. Su elección tuvo que ver con su amplia cantidad de funciones más allá del reconocimiento de olores y porque, junto con las neuronas olfativas, también se encuentra en los tejidos intestinales, renales y prostáticos. “Esta es nuestra forma de alinear las fichas de dominó para comprender cómo empujar un lado del receptor enciende el otro lado”, sugirió Manglik.

El receptor OR51E2 interactúa con dos moléculas odorantes. Uno es acetato, que huele a vinagre y el otro es propionato, que tiene un aroma a queso. Los investigadores descubrieron que esta segunda molécula se une a OR51E2 a través de enlaces iónicos y de hidrógeno específicos, creando lo que se denomina un bolsillo de unión en el receptor. Esta interacción cambia la forma de OR51E2, lo que hace que el receptor se active.

Entender como funciona y se compone el olfato es sumamente importante ya que los olores forman parte de la vida y están siempre presentes en lo cotidiano
Entender como funciona y se compone el olfato es sumamente importante ya que los olores forman parte de la vida y están siempre presentes en lo cotidiano

“Para nosotros, esto es solo el comienzo. Ahora tenemos nuestro primer punto de apoyo, el primer vistazo de cómo las moléculas del olor se unen a nuestros receptores odoríferos. Los científicos han soñado durante mucho tiempo con construir un atlas molecular de receptores olfativos que mapee sus estructuras químicas y qué combinaciones corresponden a aromas particulares. Pero eso ha estado fuera del alcance de la ciencia hasta ahora”, concluyó Manglik.

De la presente investigación también participaron Christian B. Billesbolle, Claire A. de March, Wijnand JC van der Velden, Ning Ma, Jeevan Tewari, Claudia Llinas del Torrente, Bryan Fausto, Nagarajan aidehi y Hiroaki Matsunami

Seguir leyendo

Guardar

Últimas Noticias

Cuál es el mecanismo cerebral durante sueño que mejora las funciones visuales y cognitivas

Expertos realizaron una investigación en modelos animales, en el cual efectuaron un monitoreo del cerebro y de los músculos luego de una fase específica durante el descanso. Los alcances del trabajo
Cuál es el mecanismo cerebral durante sueño que mejora las funciones visuales y cognitivas

La NASA estudia enviar una nueva misión a Plutón para desentrañar sus misterios

En 2015, la visita de la nave New Horizons despertó cientos de preguntas. Durante Perséfone, la próxima operación hacia este cuerpo celeste, se buscará develar los secretos del planeta enano y del Cinturón de Kuiper
La NASA estudia enviar una nueva misión a Plutón para desentrañar sus misterios

Los secretos ocultos del Desierto de Atacama: cómo una técnica científica revoluciona la microbiología

Un estudio liderado por investigadores de Alemania aportó una perspectiva diferente sobre la vida en ambientes extremos. Cómo se podría aplicar para el estudio de Marte
Los secretos ocultos del Desierto de Atacama: cómo una técnica científica revoluciona la microbiología

Cómo los nanoplásticos pueden alterar la efectividad de los antibióticos

Un estudio realizado por un equipo internacional advirtió un riesgo inesperado para la salud. Cuál es la sustancia plástica común que más alteraciones provocó y qué dicen los expertos sobre este hallazgo
Cómo los nanoplásticos pueden alterar la efectividad de los antibióticos

Misterios cósmicos: el breve y explosivo destino de las estrellas masivas

Con un brillo que puede eclipsar a toda una galaxia, estas estrellas tienen vidas sorprendentemente cortas, culminando en supernovas que moldean el universo. La revista Muy Interesante aborda el tema a partir de la inesperada ausencia de un astro en la galaxia Kinman
Misterios cósmicos: el breve y explosivo destino de las estrellas masivas
MÁS NOTICIAS