La Inteligencia Artificial puede predecir si vas a morir durante el próximo año

Gracias al aprendizaje automático, un algoritmo desarrollado por investigadores estadounidenses puede predecir el riesgo de muerte de un paciente cardíaco con más precisión que un médico. Sin embargo, nadie sabe exactamente cómo funciona

Guardar
Investigadores del grupo de atención médica Geisinger en el estado de Pensilvania, Estados Unidos, crearon un algoritmo de aprendizaje automático al que encargaron calcular las probabilidades de supervivencia de pacientes cardíacos al analizar los resultados de sus electrocardiogramas (Shutterstock)
Investigadores del grupo de atención médica Geisinger en el estado de Pensilvania, Estados Unidos, crearon un algoritmo de aprendizaje automático al que encargaron calcular las probabilidades de supervivencia de pacientes cardíacos al analizar los resultados de sus electrocardiogramas (Shutterstock)

La Inteligencia Artificial desarrollada por un centro de salud de Estados Unidos puede predecir el riesgo de muerte de un paciente cardíaco en el año subsiguiente con más precisión que un médico, gracias al análisis de electrocardiogramas. Sin embargo, cómo funciona todavía es un misterio.

Investigadores del grupo de atención médica Geisinger en el estado de Pensilvania, Estados Unidos, crearon un algoritmo de aprendizaje automático al que encargaron calcular las probabilidades de supervivencia de pacientes cardíacos al analizar los resultados de sus electrocardiogramas.

Este algoritmo analizó 1,77 millones de resultados de 400.000 pacientes. El programa logró ganarle a los métodos predictivos tradicionales utilizados por los profesionales de la salud.

El equipo de Geisinger "entrenó" a este algoritmo utilizando dos modelos. Uno se basó en datos históricos de electrocardiogramas, midiendo el voltaje a través del tiempo. El otro recibió la información de estos electrocardiogramas, además de la edad y el sexo de cada paciente analizado.

Luego, se le pidió a esta Inteligencia Artificial que detectara patrones para predecir las probabilidades de que un paciente específico muriera dentro del año subsiguiente o sufriera complicaciones como un infarto o fibrilación atrial, que se produce cuando el corazón late muy rápido y con un ritmo irregular. En paralelo, se usó un algoritmo basado en el sistema tradicional con el que los médicos analizan los resultados de los electrocardiogramas, con fines comparativos.

“Sin importar el caso, el modelo basado en voltajes siempre funcionó mejor que cualquier modelo que uno pudiera construir con cosas a partir de las cuales ya realizamos mediciones en electrocardiogramas”, aseguró el investigador Brandon Fornwalt, jefe del Departamento de Ciencias de la Imagen e Innovación de Geisinger en diálogo con New Scientist.

La investigación completa será presentada en las Sesiones Científicas de la Asociación Americana del Corazón (AHA, por sus siglas en inglés) en Dallas el 16 de noviembre (Shutterstock)
La investigación completa será presentada en las Sesiones Científicas de la Asociación Americana del Corazón (AHA, por sus siglas en inglés) en Dallas el 16 de noviembre (Shutterstock)

Así, la Inteligencia Artificial logró una puntuación de 0,85 (1 era la puntuación perfecta), mientras que los métodos tradicionales obtuvieron puntuaciones entre 0,6 y 0,8).

Los investigadores reconocen que en una escala tan grande, los resultados de los métodos tradicionales pueden no tener una correlación tan precisa con lo que ocurre cuando un médico realiza un diagnóstico individual. Sin embargo, lo cierto es que esta Inteligencia Artificial pudo predecir de manera precisa la muerte de personas que los médicos pensaban que estaban en perfecto estado de salud debido a sus electrocardiogramas aparentemente normales.

La investigación de Geisinger reveló que tres cardiólogos que analizaron de manera separada electrocardiogramas supuestamente normales no pudieron encontrar el patrón que había identificado la Inteligencia Artificial.

"Ese hallazgo sugiere que el modelo ve cosas de que los humanos probablemente no pueden ver, o por lo menos que simplemente ignoramos y creemos que son normales", afirmó Fornwalt. "La Inteligencia Artificial tiene el potencial de enseñarnos cosas que quizás hace décadas estamos malinterpretando".

Esta Inteligencia Artificial pudo predecir de manera precisa la muerte de personas que los médicos pensaban que estaban en perfecto estado de salud debido a sus electrocardiogramas aparentemente normales (Shutterstock)
Esta Inteligencia Artificial pudo predecir de manera precisa la muerte de personas que los médicos pensaban que estaban en perfecto estado de salud debido a sus electrocardiogramas aparentemente normales (Shutterstock)

El test está basado en información histórica de casos médicos ya cerrados y los investigadores no tienen claro cuáles son los patrones que el algoritmo detecta, su barrera ética principal para todavía no comenzar a tratar a pacientes basándose en él. Por eso, será importante demostrar en estudios clínicos que este algoritmo mejora los resultados de los pacientes en el futuro, según aseguró uno de los colaboradores del estudio, Christopher Haggerty.

La investigación completa será presentada en las Sesiones Científicas de la Asociación Americana del Corazón (AHA, por sus siglas en inglés) en Dallas el 16 de noviembre.

Este estudio no es el primero en desarrollar una Inteligencia Artificial para predecir la muerte. En abril, la Universidad de Nottingham, Reino Unido, publicó una investigación sobre un algoritmo de aprendizaje automático que pudo predecir la muerte de británicos entre los 40 y 69 años de edad. Aquí también se afirmó que el algoritmo funcionó mejor que los métodos tradicionales.

SEGUÍ LEYENDO:

Guardar

Últimas Noticias

Cómo una combinación de genes podría anticipar el comportamiento del cáncer de mama

Un equipo internacional realizó un estudio en modelos animales y advirtió que los resultados del trabajo abren nuevas puertas a terapias adaptadas para los casos resistentes. Cuáles son los aspectos que identificaron
Cómo una combinación de genes podría anticipar el comportamiento del cáncer de mama

Cuándo será la última superluna del año y cómo observarla en plenitud

Llamada Luna del Castor, nuestro satélite natural aparecerá en el cielo con un 30% más de brillo habitual debido a la proximidad con la Tierra
Cuándo será la última superluna del año y cómo observarla en plenitud

El cambio climático ya afecta a la salud de la población en Argentina, según un informe de revista The Lancet

La publicación elaboró un reporte con las evidencias sobre los efectos globales y detalló el impacto en cada región. Infobae dialogó con la científica argentina Marina Romanello, líder de la comisión Lancet Countdown que realizó la investigación
El cambio climático ya afecta a la salud de la población en Argentina, según un informe de revista The Lancet

La UBA distribuirá hoy repelentes gratuitos para prevenir el dengue: dónde y cómo inscribirse

Fueron elaborados por la Facultad de Medicina y la de Farmacia y Bioquímica. Es necesario anotarse previamente para participar. Distribuirán 5.000 unidades y la iniciativa se repetirá el sábado
La UBA distribuirá hoy repelentes gratuitos para prevenir el dengue: dónde y cómo inscribirse

Las Leónidas: cómo y cuándo observar la lluvia de estrellas fugaces que se apoderará del cielo nocturno

Los expertos estiman una tasa de actividad de aproximadamente 15 a 20 meteoros por hora, aunque este número puede ser menor debido a la intensidad de la Luna Llena. Aquí, una guía imperdible para los amantes de la astronomía
Las Leónidas: cómo y cuándo observar la lluvia de estrellas fugaces que se apoderará del cielo nocturno