Cómo es el nuevo modelo de IA que puede predecir la calidad del aire en áreas propensas a incendios

El sistema puede diferenciar el origen de las partículas en suspensión, clasificarlas y determinar la presencia de las llamadas PM2.5, especialmente finas, que representan riesgos para la salud humana, a fin de alertar sobre la peligrosidad del aire

Guardar
En todo el mundo, los incendios forestales son cada vez más frecuentes y destructivos, y generan una cantidad significativa de humo que puede transportarse miles de kilómetros, lo que impulsa la necesidad de previsiones más precisas sobre la contaminación del aire (REUTERS)
En todo el mundo, los incendios forestales son cada vez más frecuentes y destructivos, y generan una cantidad significativa de humo que puede transportarse miles de kilómetros, lo que impulsa la necesidad de previsiones más precisas sobre la contaminación del aire (REUTERS)

A nivel mundial, los incendios forestales se están volviendo más frecuentes y destructivos, generando una cantidad significativa de humo que puede transportarse a miles de kilómetros, lo que genera la necesidad de pronósticos más precisos sobre sus consecuencias y la contaminación del aire que pueden ocasionar.

Un modelo de aprendizaje más preciso, desarrollado por un equipo de investigadores de Penn State, proporciona predicciones mejoradas de la calidad del aire en áreas propensas a incendios forestales y puede diferenciar entre incendios forestales y no forestales.

A medida que el cambio climático continúa causando cambios y desafíos ecológicos, es probable que las actividades de incendios forestales se sigan incrementando. Debido a esto, es una prioridad de investigación urgente predecir con precisión la concentración de contaminantes del aire inducidos por el humo, especialmente en áreas propensas a incendios forestales.

Es un modelo de aprendizaje profundo que proporciona predicciones mejoradas de la calidad del aire en zonas propensas a incendios forestales y puede diferenciar entre incendios forestales y no forestales (REUTERS)
Es un modelo de aprendizaje profundo que proporciona predicciones mejoradas de la calidad del aire en zonas propensas a incendios forestales y puede diferenciar entre incendios forestales y no forestales (REUTERS)

Su emanación contiene una combinación de moléculas y muchos contaminantes gaseosos. Las partículas finas, denominadas PM2.5, se han asociado con riesgos significativos para la salud humana y están reguladas por la Agencia de Protección Ambiental (EPA) de EEUU.

Las partículas finas del humo de los incendios forestales pueden afectar negativamente la salud humana cuando los niveles son altos. Las predicciones de la calidad del aire para áreas propensas a incendios pueden ayudar significativamente a los administradores de emergencias y a los funcionarios de salud pública a mitigar los impactos ecológicos y de salud pública potencialmente adversos de los eventos de contaminación de la atmósfera.

El nuevo modelo podría advertir a las personas antes sobre la calidad peligrosa del aire. Nuestro equipo acaba de informar sobre sus hallazgos en la revista Science of the Total Environment.

Variantes atmosféricas

El nuevo modelo del equipo podría advertir antes a la gente de la peligrosidad de la calidad del aire (REUTERS)
El nuevo modelo del equipo podría advertir antes a la gente de la peligrosidad de la calidad del aire (REUTERS)

La predicción precisa de la calidad del aire, especialmente para los contaminantes derivados de los incendios forestales, es un desafío, ya que está muy relacionada con las características del fenómeno, como las condiciones atmosféricas, la topografía, el combustible y la humedad.

La ventaja de este modelo es que puede producir mejores predicciones capaces de capturar los cambios abruptos de PM2.5 cuando ocurren incendios forestales, sin subestimar la cantidad que está presente, cuestión que otros modelos tienden a subestimar. Del mismo modo, el modelo no sobreestima PM2.5 cuando no hay fuego.

El modelo que desarrolló el equipo científico es una iteración de un sistema de aprendizaje profundo existente llamado “Transformador”, que se basa en una estructura de secuencia a secuencia propuesto originalmente para la traducción de idiomas y se ha utilizado con éxito para la previsión de temporales. El nuevo procedimiento, llamado ST-Transformer, utiliza un marco novedoso que puede determinar las tendencias asociadas con los incendios forestales.

El humo de los incendios forestales contiene una combinación de partículas y muchos gases contaminantes (REUTERS)
El humo de los incendios forestales contiene una combinación de partículas y muchos gases contaminantes (REUTERS)

Usando datos de las estaciones de calidad del aire de la EPA en el área metropolitana de Los Ángeles, el modelo fue entrenado para realizar pronósticos de series temporales sobre las concentraciones de PM2.5. Debido a que las estaciones de calidad del aire están escasamente ubicadas en grandes áreas y recopilan datos a lo largo del día, ST-Transformer debe considerar las variables de tiempo y espacio, así como las cuestiones que se impactan entre sí.

Para entrenar el modelo, incluimos dependencias espaciales, temporales y variables de incendios forestales, humo y contaminantes del aire. También cambiamos el mecanismo de atención completa a dispersa, que se puede entrenar para priorizar y capturar la información más relevante. Esto permite que el modelo se centre solo en las PM2.5 relacionadas con los incendios forestales.

La forma tradicional de realizar este tipo de trabajo para la previsión de series temporales es entrenar modelos por separado para escenarios con y sin humo. Luego, éstos últimos sirven como referencia para predecir la contaminación del aire durante días sin incendios forestales, y el primero para pronosticar días con humo provenientes de incendios de los bosques. Nuestro equipo fusionó estas entradas en un solo modelo.

Revelamos que ST-Transformer también podría utilizarse para mejorar las predicciones en otros campos, como la calidad del agua, las precipitaciones y la radiación solar (REUTERS)
Revelamos que ST-Transformer también podría utilizarse para mejorar las predicciones en otros campos, como la calidad del agua, las precipitaciones y la radiación solar (REUTERS)

Ahí es donde entra en juego la atención escasa porque con ella se sabe qué entradas proporcionarán un pronóstico más preciso. La escasa atención también proporciona mejores estimaciones de PM2.5, reduciendo las sobreestimaciones durante los tiempos de referencia y cuando hay un incendio.

ST-Transformer también podría usarse para mejorar las predicciones en otros campos, como la calidad del agua, las precipitaciones y la radiación solar.

También participaron del proyecto de Penn State Christopher Blaszczak-Boxe, ex profesor de investigación asociado de geociencias y ahora en la Universidad de Howard, y Arif Masrur, ex estudiante graduado en geografía que obtuvo su doctorado en 2021 y ahora es ingeniero de soluciones sénior en Esri, un emprendimiento privado dedicado a desarrollar sistemas de información geográfica.

*La doctora Manzhu Yu es profesora asistente de geografía en Penn State e investigadora principal del proyecto sobre el modelo de aprendizaje para la predicción de calidad del aire. Se recibió de licenciada en Teledetección de la Universidad de Wuhan en 2012 y realizó su doctorado en Ciencias del Sistema Terrestre y Geoinformación de la Universidad George Mason en 2017.

Seguir leyendo:

Guardar

Últimas Noticias

Cambio climático y envejecimiento: el 80% de los adultos mayores vivirá en países vulnerables para 2050

Una revisión de estudios detalló los impactos del cambio climático en los mayores de 60 años. Qué medidas recomiendan los expertos consultados por Infobae
Cambio climático y envejecimiento: el 80% de los adultos mayores vivirá en países vulnerables para 2050

Por el cambio climático, detectaron un fenómeno inusual en los mosquitos que transmiten el dengue en Argentina

Científicos encontraron que los insectos estuvieron activos en todas sus etapas del ciclo de vida en pleno invierno, en agosto pasado. Cómo avanza la infección en el país y qué recomiendan para los meses de calor
Por el cambio climático, detectaron un fenómeno inusual en los mosquitos que transmiten el dengue en Argentina

Luz artificial y cambio climático: una combinación que altera el descanso de las abejas

Estos insectos juegan un papel crucial en el mantenimiento del ecosistema. Además, son piezas claves para la producción de alimentos
Luz artificial y cambio climático: una combinación que altera el descanso de las abejas

El cambio climático ya afecta a la salud de la población en Argentina, según un informe de revista The Lancet

La publicación elaboró un reporte con las evidencias sobre los efectos globales y detalló el impacto en cada región. Infobae dialogó con la científica argentina Marina Romanello, líder de la comisión Lancet Countdown que realizó la investigación
El cambio climático ya afecta a la salud de la población en Argentina, según un informe de revista The Lancet

Brasil prevé reducir 67% de los gases de efecto invernadero y se prepara para la cumbre del clima de 2025 en la Amazonía

La presencia del gigante latinoamericano en la COP29 de Azerbaiyán este año es masiva, lo que indica su intención de mostrar un relevo con la conferencia del año que viene
Brasil prevé reducir 67% de los gases de efecto invernadero y se prepara para la cumbre del clima de 2025 en la Amazonía
MÁS NOTICIAS