Cuando todo lo existente tenía tan solo 1000 millones de años, es decir más de una décima parte de su edad actual, el universo distante corría en cámara lenta, marcando el extraño efecto predicho por Albert Einstein hace más de un siglo.
Así lo afirman dos científicos australianos que descubrieron que, en ese entonces, los eventos parecían desarrollarse cinco veces más lento, debido a la forma en que la expansión del universo estira el tiempo.
“Vemos que las cosas cambian unas cinco veces más lentamente que hoy. Es como ver una película con la velocidad baja”, dijo Geraint Lewis, profesor de astrofísica y autor principal del estudio en la Universidad de Sidney.
Esto se llama dilatación del tiempo, y el astrofísico Lewis y el estadístico Brendon Brewer de la Universidad de Auckland lo han visto por primera vez en el Universo primitivo al estudiar las fluctuaciones de galaxias brillantes, llamadas galaxias cuásares durante la era cósmica.
De acuerdo con la teoría de la relatividad general de Einstein, los astrónomos deberían ver que los eventos cósmicos antiguos ocurren más lentamente que los modernos. Una consecuencia de la expansión del universo es que la luz se estira a medida que viaja por el cosmos, lo que hace que la longitud de onda sea más larga. El efecto hace que las galaxias antiguas parezcan más rojas de lo que son, o desplazadas hacia el rojo. Pero el tiempo también se alarga: si un objeto distante parpadea una vez cada segundo, la expansión del universo asegura que transcurra más de un segundo entre los destellos en el momento en que llegan a la Tierra.
“Mirando hacia atrás a una época en que el Universo tenía poco más de mil millones de años, vemos que el tiempo parece fluir cinco veces más lento”, explicó Lewis.
Los astrónomos ya han visto previamente estrellas explotar en cámara lenta, con el destello y el desvanecimiento desplegándose aproximadamente a la mitad de la velocidad normal, cuando el universo tenía la mitad de su edad actual. Pero en los intentos de ver la dilatación del tiempo en el cosmos muy primitivo, mediante la observación de galaxias distantes extremadamente brillantes llamadas cuásares, no se había logrado encontrar el efecto.
Es por eso que los doctores Lewis y Brewer realizaron análisis estadísticos detallados de 190 cuásares observados durante dos décadas y descubrieron que, contrariamente a trabajos anteriores, los eventos cósmicos parecían desarrollarse mucho más lentamente en el universo primitivo. La clave de su éxito, publicada en la revista Nature Astronomy, fue encontrar el equivalente al tictac de un reloj en las ricas y erráticas pantallas de luz de los cuásares.
“Si estuvieras allí, en este Universo infantil, un segundo parecería un segundo, pero desde nuestra posición, más de 12 mil millones de años en el futuro, ese tiempo inicial parece retrasarse”, aseguró Lewis.
Aunque en realidad no se nota en nuestra vida cotidiana, el espacio y el tiempo en el Universo están inextricablemente vinculados. Así es como podemos ver su expansión acelerada. La luz procedente de distancias mucho más lejanas se estira a medida que se expande el espacio, desplazándose hacia longitudes de onda más largas y rojas cuanto mayor es la distancia a la fuente.
Este efecto se llama efecto Doppler y también se puede experimentar aquí en la Tierra. Es, por ejemplo, la forma en que el sonido de la sirena de una ambulancia parece extenderse a medida que este vehículo se aleja. En esta analogía, la ambulancia se convierte en una galaxia lejana y la luz es la sirena. En la fuente, la emisión es normal, pero desde nuestra perspectiva se estira todo.
Algo similar debería suceder, y sucede, con el tiempo, como hemos visto en las explosiones de supernovas en la mitad del Universo observable. El tiempo pasa normalmente para nosotros. Para alguien que pase el rato cerca de la explosión de la supernova, el tiempo también parecería transcurrir normalmente. Pero debido a la velocidad relativa entre los dos puntos, nos parece que la supernova ocurre en cámara lenta.
Si bien los astrónomos esperaban ver la dilatación del tiempo en el universo antiguo y estaban desconcertados de por qué el trabajo anterior no había logrado detectar el efecto, la predicción aún tenía que probarse, dijo Lewis.
“En algún nivel, esto genera confianza en que ASRNCATBYJA6FBIU2L77ELBDAA. Tenemos esta imagen que nos dio Einstein y la probamos en varias oportunidades. Un buen científico no da por sentadas estas cosas y tienes que seguir probando”, sostuvo Lewis.
El profesor Brian Schmidt, astrónomo de la Universidad Nacional de Australia en Canberra, quien compartió el premio Nobel de física en 2011 por descubrir la expansión acelerada del universo, dijo que la ciencia progresó al probar continuamente las predicciones de las teorías.
“En este caso, Lewis y sus colaboradores han ampliado los estudios de dilatación del tiempo realizados previamente con supernovas a distancias mayores. Y si bien han descubierto que, una vez más, la relatividad general ha predicho lo que se ha observado, esto aclara algunas preocupaciones potenciales sobre la dilatación del tiempo observada en los cuásares de otros estudios”, finalizó.
Seguir leyendo: