Crean un modelo para predecir la próxima variante de preocupación del coronavirus

Investigadores de Harvard, MIT y la Universidad de Massachusetts desarrollaron un sistema que pronosticó el predominio de Ómicron BA.2. Cuál es el siguiente paso en la evolución del virus

Guardar
Desarrollaron un modelo de “machine learning” para predecir qué variantes virales dominarán y causarán probablemente nuevas olas/Archivo
Desarrollaron un modelo de “machine learning” para predecir qué variantes virales dominarán y causarán probablemente nuevas olas/Archivo

Científicos del Instituto Broad del MIT y Harvard y de la Facultad de Medicina de la Universidad de Massachusetts, en los Estados Unidos, desarrollaron un modelo de “machine learning” (o “aprendizaje automático”) que puede analizar millones de genomas de muestras del coronavirus y predecir qué variantes virales dominarán y causarán probablemente nuevas olas. El modelo fue llamado PyR0 y podría ayudar a los investigadores a identificar qué partes del genoma viral tienen menos probabilidades de mutar y, por tanto, son buenos objetivos para las vacunas que funcionarán contra las futuras variantes. Los resultados se publicaron en la revista Science.

Los investigadores entrenaron el modelo de aprendizaje automático utilizando 6 millones de genomas del coronavirus SARS-CoV-2 que estaban en la base de datos GISAID en enero de 2022. Demostraron que su herramienta también puede estimar el efecto de las mutaciones genéticas en la aptitud del virus, es decir, su capacidad para multiplicarse y propagarse en una población.

Cuando el equipo probó su modelo con los datos genómicos del virus de enero de 2022, predijo el aumento de la variante BA.2, que se convirtió en dominante en muchos países en marzo de 2022. Está ahora predominando también en los afectados por el COVID-19 en la Argentina. PyR0 también habría identificado la variante alfa (B.1.1.7) a finales de noviembre de 2020, un mes antes de que la Organización Mundial de la Salud la catalogara como variante preocupante.

El modelo predijo el aumento de la variante BA.2, que se convirtió en dominante en muchos países en marzo de 2022/ REUTERS/Elijah Nouvelage/Archivo
El modelo predijo el aumento de la variante BA.2, que se convirtió en dominante en muchos países en marzo de 2022/ REUTERS/Elijah Nouvelage/Archivo

El equipo de investigación incluye al primer autor, Fritz Obermeyer, becario en el Instituto Broad cuando se inició el estudio, y a los autores principales, Jacob Lemieux, instructor de medicina en la Facultad de Medicina de Harvard y en el Hospital General de Massachusetts, y Pardis Sabeti, miembro del instituto Broad, profesor del Centro de Biología de Sistemas y del Departamento de Biología Organísmica y Evolutiva de la Universidad de Harvard, y profesor del Departamento de Inmunología y Enfermedades Infecciosas de la Escuela de Salud Pública T. H. Chan de Harvard. Sabeti es también investigador del Instituto Médico Howard Hughes.

El modelo PyR0 se basa en un marco de aprendizaje automático llamado Pyro, desarrollado originalmente por un equipo de Uber AI Labs, la empresa que ofrece servicios de movilidad a través de una aplicación. En 2020, tres miembros de ese equipo, incluidos Obermeyer y Martin Jankowiak, segundo autor del estudio, se unieron al Instituto Broad y comenzaron a aplicar el marco a la biología.

“Este trabajo fue el resultado de la unión de biólogos y genetistas con ingenieros de software e informáticos”, dijo Lemieux. “Fuimos capaces de abordar algunas cuestiones realmente desafiantes en la salud pública que ningún enfoque disciplinario podría haber respondido por sí solo”, agregó.

“Este tipo de enfoque basado en el aprendizaje automático, que examina todos los datos y los combina en una sola predicción, es extremadamente valioso”, dijo Sabeti. “Nos da una ventaja a la hora de identificar lo que está surgiendo y podría ser una amenaza potencial”.

El modelo determina qué mutaciones del coronavirus son cada vez más comunes y estima la rapidez con la que cada mutación puede provocar la propagación del virus. (Getty Images)
El modelo determina qué mutaciones del coronavirus son cada vez más comunes y estima la rapidez con la que cada mutación puede provocar la propagación del virus. (Getty Images)

Los investigadores de todo el mundo han trabajado para predecir la aptitud de las diferentes variantes del coronavirus desde el principio de la pandemia. Pero los modelos anteriores no podían comparar todas las variantes simultáneamente, o tardaban días en procesar sólo unos pocos miles de genomas.

En cambio, PyR0 puede analizar millones de genomas -todos los datos del coronavirus disponibles públicamente- en aproximadamente una hora. Para eso, agrupa secuencias similares y define “grupos” de genomas por la constelación de mutaciones que comparten. Al centrarse en las mutaciones, que pueden aparecer en múltiples variantes, PyR0 tiene más poder estadístico que los modelos que se centran en las variantes virales.

Luego, el modelo determina qué mutaciones son cada vez más comunes y estima la rapidez con la que cada mutación puede provocar la propagación del virus. También estima la rapidez con la que aumentará el número de casos de las distintas variantes en función de su composición genética.

Al identificar qué mutaciones son importantes para la aptitud de determinadas variantes, el modelo también ofrece una visión biológica de cómo se propaga y desarrolla el COVID-19. Por ejemplo, conocer las mutaciones críticas puede ayudar a los científicos a predecir si las nuevas variantes serán más contagiosas o evadirán los anticuerpos neutralizantes, y también puede ayudarles a decidir qué mutaciones estudiar con más detalle.

Con el nuevo modelo de "machine learning", las autoridades sanitarias podrían tomar mejores decisiones/GETTY
Con el nuevo modelo de "machine learning", las autoridades sanitarias podrían tomar mejores decisiones/GETTY

El genoma del coronavirus SARS-CoV-2 ha acumulado muchas mutaciones, por lo que resulta muy difícil analizar todas las combinaciones de mutaciones”, explica Jankowiak, investigador de aprendizaje automático en el Broad. “La ventaja de este tipo de análisis es que examina todo el genoma de forma holística y puede señalar mutaciones o variantes que reciben menos atención en el laboratorio”, expresó.

Los investigadores afirman que su estudio sugiere que el actual aumento de la aptitud viral se debe a la capacidad del virus para escapar de las respuestas inmunitarias. Sugirieron que los responsables de la salud pública, con la advertencia anticipada de la secuencia y las características de una variante, podrían aplicar medidas específicas para gestionar el recuento de casos. Y saber qué mutaciones contribuyen a la supervivencia de una variante -y por tanto no es probable que cambien- puede ayudar a los investigadores a elegir mejores objetivos para futuras vacunas.

Las nuevas versiones de este modelo o de otros similares podrían mejorar las predicciones teniendo en cuenta las interacciones entre las mutaciones. Los investigadores afirmaron que, con más trabajo, su modelo podría ayudar a controlar otros virus que tengan suficientes datos genéticos.

La cantidad de datos que tenemos, junto con los métodos que hemos desarrollado, nos permiten obtener una visión en tiempo real de la evolución del virus en diferentes lugares del mundo de una manera que no era posible durante las epidemias anteriores”, dijo Obermeyer. “En 1917, la gente sólo sabía si tenía o no la gripe. Ahora, tenemos una visión muy precisa de miles de sublinajes diferentes del coronavirus. Eso es increíble”.

SEGUIR LEYENDO:

Guardar

Últimas Noticias

Qué fue la “explosión cámbrica” y por qué cambió la historia de la Tierra

Nuevos descubrimientos en el Gran Cañón cambian el enfoque del estudio geológico de nuestro planeta hace 500 millones de años. Los alcances del trabajo que ya rompe varios paradigmas
Qué fue la “explosión cámbrica” y por qué cambió la historia de la Tierra

El calentamiento global es responsable de casi un 20% de los casos de dengue en el mundo, alerta un estudio

Expertos de las universidades de Harvard y Stanford destacaron el rol del cambio climático en la transmisión de la patología. Por las altas temperaturas, ideales para los mosquitos, se estima que duplicarán su impacto en los próximos 25 años. Cuál es el rol de la bacteria Wolbachia
El calentamiento global es responsable de casi un 20% de los casos de dengue en el mundo, alerta un estudio

Los datos sorprendentes sobre meganeura, el insecto volador más grande de la historia

Habitó hace unos 300 millones de años y es considerada el “gigante de los cielos”, con aspectos similares a una libélula. Los detalles de la especie que dominaba el aire en los antiguos pantanos del período Carbonífero
Los datos sorprendentes sobre meganeura, el insecto volador más grande de la historia

CHIEF, la IA creada por Harvard para la detección y predicción de las probabilidades de supervivencia en pacientes con cáncer

Entre sus principales propiedades, determina con mucha precisión las características del tejido que rodea un tumor canceroso
CHIEF, la IA creada por Harvard para la detección y predicción de las probabilidades de supervivencia en pacientes con cáncer

Cambio climático y envejecimiento: el 80% de los adultos mayores vivirá en países vulnerables para 2050

Una revisión de estudios detalló los impactos del cambio climático en los mayores de 60 años. Qué medidas recomiendan los expertos consultados por Infobae
Cambio climático y envejecimiento: el 80% de los adultos mayores vivirá en países vulnerables para 2050
MÁS NOTICIAS