Una vacuna “en parche” desarrolló diez veces más respuesta inmune que el tradicional pinchazo

Investigadores de las universidades de Stanford y Carolina del Norte estudian si la vacunación transdérmica a través de microagujas impresas en 3D puede superar a la inyección subcutánea y generar una mayor inmunidad. Qué descubrieron

Guardar
Los parches de microagujas brindan
Los parches de microagujas brindan un enfoque de vacunación no invasivo y autoaplicable (University of North Carolina at Chapel Hill)

La actual pandemia por COVID-19 puso a la ciencia a prueba ante la necesidad de tener que desarrollar vacunas para prevenir la infección en tiempo récord.

Ahora, investigadores de la Universidad de Stanford y la Universidad de Carolina del Norte en Chapel Hill, dieron un paso más al dar a conocer los resultados de un trabajo en el que estudian un parche de vacuna de microagujas que promete superar el pinchazo habitual para aumentar la inmunidad.

El truco consiste en aplicar el parche de la vacuna directamente sobre la piel, que está llena de células inmunitarias a las que se dirigen las tradicionales vacunas.

Al parecer, la respuesta inmune resultante del parche de vacuna fue diez veces mayor que la vacuna administrada en el músculo del brazo con un pinchazo de aguja, según un estudio realizado en animales y publicado por el equipo de científicos en Proceedings of the National Academy of Sciences.

“Los parches de microagujas diseñados para entregar cargas con precisión en el espacio intradérmico, ricos en células inmunes, brindan un enfoque de vacunación no invasivo y autoaplicable, eliminando la necesidad de agujas hipodérmicas y personal médico capacitado para la administración de vacunas”, explicaron los autores en la publicación científica. Y agregaron: “Aquí mostramos que los métodos avanzados de impresión 3D permiten la fabricación de microagujas poliméricas de geometrías controladas (difíciles de fabricar con métodos tradicionales) diseñadas para mejorar el recubrimiento de los componentes de la vacuna. Usando componentes de vacuna modelo, demostramos que la administración de microagujas impresas en 3D resultó en una mayor retención de carga en la piel, activación de células inmunes y respuestas inmunes humorales y celulares más potentes en comparación con las rutas de vacunación tradicionales”.

La respuesta inmune resultante del
La respuesta inmune resultante del parche de vacuna fue diez veces mayor que la vacuna administrada en el músculo del brazo con un pinchazo de aguja (Getty Images)

Joseph M. DeSimone es profesor de medicina traslacional e ingeniería química en la Universidad de Stanford y profesor emérito en la Universidad de Carolina del Norte y resaltó que, al desarrollar esta tecnología, esperan “sentar las bases para un desarrollo global aún más rápido de vacunas, en dosis más bajas, sin dolor ni ansiedad”.

Según los investigadores, la facilidad y eficacia de un parche de vacuna marca el rumbo de una nueva forma de administrar vacunas que es indolora, menos invasiva que una inyección con una aguja y, además, puede autoadministrarse.

Los resultados del estudio muestran que el parche de la vacuna generó una respuesta significativa de anticuerpos específicos de antígenos y células T que fue 50 veces mayor que una inyección subcutánea administrada debajo de la piel.

Esa respuesta inmune aumentada podría conducir a un ahorro de dosis, con un parche de vacuna de microagujas que usa una dosis más pequeña para generar una respuesta inmune similar a la de una vacuna administrada con una aguja y una jeringa.

Si bien los parches de microagujas se habían estudiado durante décadas, el presente trabajo supera algunos desafíos del pasado: a través de la impresión 3D, las microagujas se pueden personalizar fácilmente para desarrollar varios parches de vacuna para la gripe, el sarampión, la hepatitis o las vacunas COVID-19.

Acerca de la tecnología de las microagujas

“Nuestro enfoque nos permite imprimir
“Nuestro enfoque nos permite imprimir directamente en 3D las microagujas (Reuters)

Si bien el autor principal del estudio, Shaomin Tian, investigador del Departamento de Microbiología e Inmunología de la Facultad de Medicina de la Universidad de Carolina del Norte reconoció que “en general, es un desafío adaptar las microagujas a diferentes tipos de vacunas”, y consideró que “estos problemas, junto con los desafíos de fabricación, posiblemente han frenado el campo de las microagujas para la administración de vacunas”, cree que en esta oportunidad el desarrollo podría correr diferente suerte.

La mayoría de las vacunas de microagujas se fabrican con plantillas maestras para hacer moldes. Sin embargo, el moldeado de microagujas no es muy versátil y los inconvenientes incluyen una menor nitidez de la aguja durante la replicación.

“Nuestro enfoque nos permite imprimir directamente en 3D las microagujas, lo que nos da mucha libertad de diseño para hacer las mejores microagujas desde el punto de vista del rendimiento y el costo”, explicó Tian.

Las microagujas se produjeron en la Universidad de Carolina del Norte en Chapel Hill utilizando un prototipo de impresora 3D CLIP que DeSimone inventó y es producido por CARBON, una empresa de Silicon-Valley que él cofundó.

SEGUIR LEYENDO

Guardar

Últimas Noticias

Científicos de Hong Kong desarrollaron un modelo de IA que diagnostica enfermedades oculares

El estudio reveló que esta tecnología exhibe un rendimiento comparable o superior al de oftalmólogos de nivel intermedio en la detección de doce afecciones oculares
Científicos de Hong Kong desarrollaron

¿Cuánto es el tiempo máximo que dura un repelente contra mosquitos?

La importancia de los componentes activos y los porcentajes de concentración en esta herramienta contra el insecto que transmite el dengue y otras enfermedades. Con qué frecuencia hay que volver a aplicarse, según la ANMAT
¿Cuánto es el tiempo máximo

Descubren cómo los terremotos también pueden estar vinculados con el cambio climático

Un estudio reciente reveló que la reducción de masas de hielo genera movimientos en estructuras profundas del suelo y altera los patrones de eventos sísmicos. Este fenómeno afecta regiones donde grandes acumulaciones de agua desaparecen rápidamente
Descubren cómo los terremotos también

Científicos argentinos descifraron el genoma de la yerba mate

El trabajo llevó una década de investigación y contó con colaboración de equipos de la UBA y el CONICET junto a científicos de Brasil, Europa y Estados Unidos. El líder del estudio anticipó a Infobae los hallazgos que abren la puerta a nuevas variaciones genéticas de la infusión
Científicos argentinos descifraron el genoma

Manubot, el robot que recrea el salto maorí más espectacular

Un salto tradicional de Nueva Zelanda, conocido por su gran impacto visual, se convirtió en un fenómeno científico gracias a experimentos que revelaron sus principios fundamentales, destaca la revista New Scientist
Manubot, el robot que recrea
MÁS NOTICIAS